// Copyright 2009 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.
/* Package rpc is a trimmed down version of net/rpc in the standard library. Original doc: Package rpc provides access to the exported methods of an object across a network or other I/O connection. A server registers an object, making it visible as a service with the name of the type of the object. After registration, exported methods of the object will be accessible remotely. A server may register multiple objects (services) of different types but it is an error to register multiple objects of the same type. Only methods that satisfy these criteria will be made available for remote access; other methods will be ignored: - the method's type is exported. - the method is exported. - the method has two arguments, both exported (or builtin) types. - the method's second argument is a pointer. - the method has return type error. In effect, the method must look schematically like func (t *T) MethodName(argType T1, replyType *T2) error where T1 and T2 can be marshaled by encoding/gob. These requirements apply even if a different codec is used. (In the future, these requirements may soften for custom codecs.) The method's first argument represents the arguments provided by the caller; the second argument represents the result parameters to be returned to the caller. The method's return value, if non-nil, is passed back as a string that the client sees as if created by errors.New. If an error is returned, the reply parameter will not be sent back to the client. The server may handle requests on a single connection by calling ServeConn. More typically it will create a network listener and call Accept or, for an HTTP listener, HandleHTTP and http.Serve. A client wishing to use the service establishes a connection and then invokes NewClient on the connection. The convenience function Dial (DialHTTP) performs both steps for a raw network connection (an HTTP connection). The resulting Client object has two methods, Call and Go, that specify the service and method to call, a pointer containing the arguments, and a pointer to receive the result parameters. The Call method waits for the remote call to complete while the Go method launches the call asynchronously and signals completion using the Call structure's Done channel. Unless an explicit codec is set up, package encoding/gob is used to transport the data. Here is a simple example. A server wishes to export an object of type Arith: package server import "errors" type Args struct { A, B int } type Quotient struct { Quo, Rem int } type Arith int func (t *Arith) Multiply(args *Args, reply *int) error { *reply = args.A * args.B return nil } func (t *Arith) Divide(args *Args, quo *Quotient) error { if args.B == 0 { return errors.New("divide by zero") } quo.Quo = args.A / args.B quo.Rem = args.A % args.B return nil } The server calls (for HTTP service): arith := new(Arith) rpc.Register(arith) rpc.HandleHTTP() l, e := net.Listen("tcp", ":1234") if e != nil { log.Fatal("listen error:", e) } go http.Serve(l, nil) At this point, clients can see a service "Arith" with methods "Arith.Multiply" and "Arith.Divide". To invoke one, a client first dials the server: client, err := rpc.DialHTTP("tcp", serverAddress + ":1234") if err != nil { log.Fatal("dialing:", err) } Then it can make a remote call: // Synchronous call args := &server.Args{7,8} var reply int err = client.Call("Arith.Multiply", args, &reply) if err != nil { log.Fatal("arith error:", err) } fmt.Printf("Arith: %d*%d=%d", args.A, args.B, reply) or // Asynchronous call quotient := new(Quotient) divCall := client.Go("Arith.Divide", args, quotient, nil) replyCall := <-divCall.Done // will be equal to divCall // check errors, print, etc. A server implementation will often provide a simple, type-safe wrapper for the client. The net/rpc package is frozen and is not accepting new features.*/